Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024520180270110967
Journal of the Environmental Sciences
2018 Volume.27 No. 11 p.967 ~ p.974
Evaluation of Oxidation Efficiency of Aromatic Volatile Hydrocarbons using Visible-light-activated One-Dimensional Metal Oxide Doping Semiconductor Nanomaterials prepared by Ultrasonic-assisted Hydrothermal Synthesis
Jo Wan-Kuen

Shin Seung-Ho
Choi Jeong-Hak
Lee Joon-Yeob
Abstract
In this study, we evaluated the photocatalytic oxidation efficiency of aromatic volatile hydrocarbons by using WO3?doped TiO2 nanotubes (WTNTs) under visible-light irradiation. One-dimensional WTNTs were synthesized by ultrasonic-assisted hydrothermal method and impregnation. XRD analysis revealed successful incorporation of WO3 into TiO2 nanotube (TNT) structures. UV-Vis spectra exhibited that the synthesized WTNT samples can be activated under visible light irradiation. FE-SEM and TEM images showed the one-dimensional structure of the prepared TNTs and WTNTs. The photocatalytic oxidation efficiencies of toluene, ethylbenzene, and o-xylene were higher using WTNT samples than undoped TNT. These results were explained based on the charge separation ability, adsorption capability, and light absorption of the sample photocatalysts. Among the different light sources, light-emitting-diodes (LEDs) are more highly energy-efficient than 8-W daylight used for the photocatalytic oxidation of toluene, ethylbenzene, and o-xylene, though the photocatalytic oxidation efficiency is higher for 8-W daylight.
KEYWORD
TiO2 nanotube, WO3, Photocatalytic oxidation efficiency, Light source
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)